skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sevy, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resonant two-photon ionization (R2PI) spectroscopy has been used to measure the bond dissociation energies (BDEs) of the diatomic transition metal nitrides ScN, TiN, YN, MoN, RuN, RhN, HfN, OsN, and IrN. Of these, the BDEs of only TiN and HfN had been previously measured. Due to the many ways electrons can be distributed among the d orbitals, these molecules possess an extremely high density of electronic states near the ground separated atom limit. Spin–orbit and nonadiabatic interactions couple these states quite effectively, so that the molecules readily find a path to dissociation when excited above the ground separated atom limit. The result is a sharp drop in ion signal in the R2PI spectrum when the molecule is excited above this limit, allowing the BDE to be readily measured. Using this method, the values D0(ScN) = 3.905(29) eV, D0(TiN) = 5.000(19) eV, D0(YN) = 4.125(24) eV, D0(MoN) = 5.220(4) eV, D0(RuN) = 4.905(3) eV, D0(RhN) = 3.659(32) eV, D0(HfN) = 5.374(4) eV, D0(OsN) = 5.732(3) eV, and D0(IrN) = 5.115(4) eV are obtained. To support the experimental findings, ab initio coupled-cluster calculations extrapolated to the complete basis set limit (CBS) were performed. With a semiempirical correction for spin–orbit effects, these coupled-cluster single double triple-CBS calculations give a mean absolute deviation from the experimental BDE values of 0.20 eV. A discussion of the periodic trends, summaries of previous work, and comparisons to isoelectronic species is also provided. 
    more » « less